Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690856

RESUMEN

The mediator kinases CDK8 and CDK19 control the dynamic transcription of selected genes in response to various signals and have been shown to be hijacked to sustain hyperproliferation by various solid and liquid tumors. CDK8/19 is emerging as a promising anticancer therapeutic target. Here, we report the discovery of compound 12, a novel small molecule CDK8/19 inhibitor. This molecule demonstrated not only decent enzymatic and cellular activities but also remarkable selectivity in CDK and kinome panels. Besides, compound 12 also displayed favorable ADME profiles including low CYP1A2 inhibition, acceptable clearance, and high oral bioavailability in multiple preclinical species. Robust in vivo PD and efficacy studies in mice models further demonstrated its potential use as mono- and combination therapy for the treatment of cancers.

2.
Bioorg Chem ; 146: 107285, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547721

RESUMEN

Cyclin-dependent kinases (CDKs) are critical cell cycle regulators that are often overexpressed in tumors, making them promising targets for anti-cancer therapies. Despite substantial advancements in optimizing the selectivity and drug-like properties of CDK inhibitors, safety of multi-target inhibitors remains a significant challenge. Macrocyclization is a promising drug discovery strategy to improve the pharmacological properties of existing compounds. Here we report the development of a macrocyclization platform that enabled the highly efficient discovery of a novel, macrocyclic CDK2/4/6 inhibitor from an acyclic precursor (NUV422). Using dihedral angle scan and structure-based, computer-aided drug design to select an optimal ring-closing site and linker length for the macrocycle, we identified compound 8 as a potent new CDK2/4/6 inhibitor with optimized cellular potency and safety profile compared to NUV422. Our platform leverages both experimentally-solved as well as generative chemistry-derived macrocyclic structures and can be deployed to streamline the design of macrocyclic new drugs from acyclic starting compounds, yielding macrocyclic compounds with enhanced potency and improved drug-like properties.


Asunto(s)
Quinasas Ciclina-Dependientes , Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad , Quinasa 2 Dependiente de la Ciclina/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Diseño de Fármacos , Descubrimiento de Drogas
3.
Bioorg Med Chem ; 100: 117633, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38342078

RESUMEN

The methionine adenosyltransferase MAT2A catalyzes the synthesis ofthe methyl donor S-adenosylmethionine (SAM) and thereby regulates critical aspects of metabolism and transcription. Aberrant MAT2A function can lead to metabolic and transcriptional reprogramming of cancer cells, and MAT2A has been shown to promote survival of MTAP-deficient tumors, a genetic alteration that occurs in âˆ¼ 13 % of all tumors. Thus, MAT2A holds great promise as a novel anticancer target. Here, we report a novel series of MAT2A inhibitors generated by a fragment growing approach from AZ-28, a low-molecular weight MAT2A inhibitor with promising pre-clinical properties. X-ray co-crystal structure revealed that compound 7 fully occupies the allosteric pocket of MAT2A as a single molecule mimicking MAT2B. By introducing additional backbone interactions and rigidifying the requisite linker extensions, we generated compound 8, which exhibited single digit nanomolar enzymatic and sub-micromolar cellular inhibitory potency for MAT2A.


Asunto(s)
Metionina Adenosiltransferasa , Neoplasias , Humanos , Sitio Alostérico , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/metabolismo , Mutación , S-Adenosilmetionina/metabolismo
4.
J Mol Biol ; 436(2): 168383, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38070861

RESUMEN

Creatine is an essential metabolite for the storage and rapid supply of energy in muscle and nerve cells. In humans, impaired metabolism, transport, and distribution of creatine throughout tissues can cause varying forms of mental disability, also known as creatine deficiency syndrome (CDS). So far, 80 mutations in the creatine transporter (SLC6A8) have been associated to CDS. To better understand the effect of human genetic variants on the physiology of SLC6A8 and their possible impact on CDS, we studied 30 missense variants including 15 variants of unknown significance, two of which are reported here for the first time. We expressed these variants in HEK293 cells and explored their subcellular localization and transport activity. We also applied computational methods to predict variant effect and estimate site-specific changes in thermodynamic stability. To explore variants that might have a differential effect on the transporter's conformers along the transport cycle, we constructed homology models of the inward facing, and outward facing conformations. In addition, we used mass-spectrometry to study proteins that interact with wild type SLC6A8 and five selected variants in HEK293 cells. In silico models of the protein complexes revealed how two variants impact the interaction interface of SLC6A8 with other proteins and how pathogenic variants lead to an enrichment of ER protein partners. Overall, our integrated analysis disambiguates the pathogenicity of 15 variants of unknown significance revealing diverse mechanisms of pathogenicity, including two previously unreported variants obtained from patients suffering from the creatine deficiency syndrome.


Asunto(s)
Encefalopatías Metabólicas Innatas , Creatina , Discapacidad Intelectual Ligada al Cromosoma X , Proteínas del Tejido Nervioso , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática , Humanos , Creatina/deficiencia , Células HEK293 , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Encefalopatías Metabólicas Innatas/genética , Análisis Mutacional de ADN/métodos , Mutación Missense , Biología Computacional/métodos
5.
Nat Commun ; 13(1): 3624, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750669

RESUMEN

The precise regulation of RNA Polymerase II (Pol II) transcription after genotoxic stress is crucial for proper execution of the DNA damage-induced stress response. While stalling of Pol II on transcription-blocking lesions (TBLs) blocks transcript elongation and initiates DNA repair in cis, TBLs additionally elicit a response in trans that regulates transcription genome-wide. Here we uncover that, after an initial elongation block in cis, TBLs trigger the genome-wide VCP-mediated proteasomal degradation of promoter-bound, P-Ser5-modified Pol II in trans. This degradation is mechanistically distinct from processing of TBL-stalled Pol II, is signaled via GSK3, and contributes to the TBL-induced transcription block, even in transcription-coupled repair-deficient cells. Thus, our data reveal the targeted degradation of promoter-bound Pol II as a critical pathway that allows cells to cope with DNA damage-induced transcription stress and enables the genome-wide adaptation of transcription to genotoxic stress.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Transcripción Genética , Daño del ADN/genética , Reparación del ADN/genética , Glucógeno Sintasa Quinasa 3/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
7.
Nat Cell Biol ; 23(6): 608-619, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108662

RESUMEN

Correct transcription is crucial for life. However, DNA damage severely impedes elongating RNA polymerase II, causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions. However, the exact mechanism and factors involved remain largely unknown. Here, using a genome-wide CRISPR-Cas9 screen, we identified the elongation factor ELOF1 as an important factor in the transcription stress response following DNA damage. We show that ELOF1 has an evolutionarily conserved role in transcription-coupled nucleotide excision repair (TC-NER), where it promotes recruitment of the TC-NER factors UVSSA and TFIIH to efficiently repair transcription-blocking lesions and resume transcription. Additionally, ELOF1 modulates transcription to protect cells against transcription-mediated replication stress, thereby preserving genome stability. Thus, ELOF1 protects the transcription machinery from DNA damage via two distinct mechanisms.


Asunto(s)
Daño del ADN , Reparación del ADN , Inestabilidad Genómica , Factor 1 de Elongación Peptídica/metabolismo , Elongación de la Transcripción Genética , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Evolución Molecular , Células HCT116 , Humanos , Factor 1 de Elongación Peptídica/genética , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Ubiquitinación
8.
Cell Rep ; 33(9): 108469, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33264625

RESUMEN

Transcription-replication (T-R) conflicts cause replication stress and loss of genome integrity. However, the transcription-related processes that restrain such conflicts are poorly understood. Here, we demonstrate that the RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphatase protein phosphatase 1 (PP1) nuclear targeting subunit (PNUTS)-PP1 inhibits replication stress. Depletion of PNUTS causes lower EdU uptake, S phase accumulation, and slower replication fork rates. In addition, the PNUTS binding partner WDR82 also promotes RNAPII-CTD dephosphorylation and suppresses replication stress. RNAPII has a longer residence time on chromatin after depletion of PNUTS or WDR82. Furthermore, the RNAPII residence time is greatly enhanced by proteasome inhibition in control cells but less so in PNUTS- or WDR82-depleted cells, indicating that PNUTS and WDR82 promote degradation of RNAPII on chromatin. Notably, reduced replication is dependent on transcription and the phospho-CTD binding protein CDC73 after depletion of PNUTS/WDR82. Altogether, our results suggest that RNAPII-CTD dephosphorylation is required for the continuous turnover of RNAPII on chromatin, thereby preventing T-R conflicts.


Asunto(s)
Cromatina/efectos de los fármacos , Proteínas Cromosómicas no Histona/uso terapéutico , ARN Polimerasa II/metabolismo , Proteínas Cromosómicas no Histona/farmacología , Humanos , Transfección
9.
Nucleic Acids Res ; 47(17): e100, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31318974

RESUMEN

The majority of the proteins involved in processing of DNA double-strand breaks (DSBs) accumulate at the damage sites. Real-time imaging and analysis of these processes, triggered by the so-called microirradiation using UV lasers or heavy particle beams, yielded valuable insights into the underlying DSB repair mechanisms. To study the temporal organization of DSB repair responses triggered by a more clinically-relevant DNA damaging agent, we developed a system coined X-ray multi-microbeam microscope (XM3), capable of simultaneous high dose-rate (micro)irradiation of large numbers of cells with ultra-soft X-rays and imaging of the ensuing cellular responses. Using this setup, we analyzed the changes in real-time kinetics of MRE11, MDC1, RNF8, RNF168 and 53BP1-proteins involved in the signaling axis of mammalian DSB repair-in response to X-ray and UV laser-induced DNA damage, in non-cancerous and cancer cells and in the presence or absence of a photosensitizer. Our results reveal, for the first time, the kinetics of DSB signaling triggered by X-ray microirradiation and establish XM3 as a powerful platform for real-time analysis of cellular DSB repair responses.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Imagen de Lapso de Tiempo/métodos , Rayos X , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Humanos , Proteína Homóloga de MRE11 , Microscopía Electrónica de Rastreo , Osteosarcoma/metabolismo , Epitelio Pigmentado Ocular/metabolismo , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Rayos Ultravioleta
10.
Nucleic Acids Res ; 47(7): 3536-3549, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30698791

RESUMEN

UV light induces cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PPs), which can result in carcinogenesis and aging, if not properly repaired by nucleotide excision repair (NER). Assays to determine DNA damage load and repair rates are invaluable tools for fundamental and clinical NER research. However, most current assays to quantify DNA damage and repair cannot be performed in real time. To overcome this limitation, we made use of the damage recognition characteristics of CPD and 6-4PP photolyases (PLs). Fluorescently-tagged PLs efficiently recognize UV-induced DNA damage without blocking NER activity, and therefore can be used as sensitive live-cell damage sensors. Importantly, FRAP-based assays showed that PLs bind to damaged DNA in a highly sensitive and dose-dependent manner, and can be used to quantify DNA damage load and to determine repair kinetics in real time. Additionally, PLs can instantly reverse DNA damage by 405 nm laser-assisted photo-reactivation during live-cell imaging, opening new possibilities to study lesion-specific NER dynamics and cellular responses to damage removal. Our results show that fluorescently-tagged PLs can be used as a versatile tool to sense, quantify and repair DNA damage, and to study NER kinetics and UV-induced DNA damage response in living cells.


Asunto(s)
Daño del ADN/genética , ADN/genética , Dímeros de Pirimidina/genética , Carcinogénesis/genética , Carcinogénesis/efectos de la radiación , ADN/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/efectos de la radiación , Humanos , Dímeros de Pirimidina/efectos de la radiación , Rayos Ultravioleta/efectos adversos
11.
Proc Natl Acad Sci U S A ; 115(19): E4368-E4376, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29632207

RESUMEN

Initiation and promoter-proximal pausing are key regulatory steps of RNA Polymerase II (Pol II) transcription. To study the in vivo dynamics of endogenous Pol II during these steps, we generated fully functional GFP-RPB1 knockin cells. GFP-RPB1 photobleaching combined with computational modeling revealed four kinetically distinct Pol II fractions and showed that on average 7% of Pol II are freely diffusing, while 10% are chromatin-bound for 2.4 seconds during initiation, and 23% are promoter-paused for only 42 seconds. This unexpectedly high turnover of Pol II at promoters is most likely caused by premature termination of initiating and promoter-paused Pol II and is in sharp contrast to the 23 minutes that elongating Pol II resides on chromatin. Our live-cell-imaging approach provides insights into Pol II dynamics and suggests that the continuous release and reinitiation of promoter-bound Pol II is an important component of transcriptional regulation.


Asunto(s)
Regiones Promotoras Genéticas/fisiología , ARN Polimerasa II/metabolismo , Transcripción Genética/fisiología , Línea Celular Transformada , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , ARN Polimerasa II/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
12.
J Mol Biol ; 429(21): 3146-3155, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27851891

RESUMEN

The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis.


Asunto(s)
Daño del ADN , Reparación del ADN/fisiología , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Humanos , Transducción de Señal
13.
Biochim Biophys Acta ; 1848(8): 1656-70, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25917957

RESUMEN

Insufficient drug delivery into tumor cells limits the therapeutic efficacy of chemotherapy. Co-delivery of liposome-encapsulated drug and synthetic short-chain glycosphingolipids (SC-GSLs) significantly improved drug bioavailability by enhancing intracellular drug uptake. Investigating the mechanisms underlying this SC-GSL-mediated drug uptake enhancement is the aim of this study. Fluorescence microscopy was used to visualize the cell membrane lipid transfer intracellular fate of fluorescently labeled C6-NBD-GalCer incorporated in liposomes in tumor and non-tumor cells. Additionally click chemistry was applied to image and quantify native SC-GSLs in tumor and non-tumor cell membranes. SC-GSL-mediated flip-flop was investigated in model membranes to confirm membrane-incorporation of SC-GSL and its effect on membrane remodeling. SC-GSL enriched liposomes containing doxorubicin (Dox) were incubated at 4°C and 37°C and intracellular drug uptake was studied in comparison to standard liposomes and free Dox. SC-GSL transfer to the cell membrane was independent of liposomal uptake and the majority of the transferred lipid remained in the plasma membrane. The transfer of SC-GSL was tumor cell-specific and induced membrane rearrangement as evidenced by a transbilayer flip-flop of pyrene-SM. However, pore formation was measured, as leakage of hydrophilic fluorescent probes was not observed. Moreover, drug uptake appeared to be mediated by SC-GSLs. SC-GSLs enhanced the interaction of doxorubicin (Dox) with the outer leaflet of the plasma membrane of tumor cells at 4°C. Our results demonstrate that SC-GSLs preferentially insert into tumor cell plasma membranes enhancing cell intrinsic capacity to translocate amphiphilic drugs such as Dox across the membrane via a biophysical process.


Asunto(s)
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Antibióticos Antineoplásicos/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Doxorrubicina/análogos & derivados , Galactosilceramidas/farmacología , Lípidos de la Membrana/farmacología , Neoplasias/metabolismo , 4-Cloro-7-nitrobenzofurazano/química , 4-Cloro-7-nitrobenzofurazano/metabolismo , 4-Cloro-7-nitrobenzofurazano/farmacología , Membrana Celular/metabolismo , Cromatografía en Capa Delgada , Química Clic , Doxorrubicina/metabolismo , Galactosilceramidas/química , Galactosilceramidas/metabolismo , Células HeLa , Humanos , Membrana Dobles de Lípidos , Liposomas , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Estructura Molecular , Polietilenglicoles/metabolismo , Porosidad , Temperatura , Factores de Tiempo
14.
PLoS Genet ; 9(4): e1003431, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637614

RESUMEN

The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability. We studied the consequences of TTDA inactivation by generating a Ttda knock-out (Ttda(-/-) ) mouse-model resembling TTD-A patients. Unexpectedly, Ttda(-/-) mice were embryonic lethal. However, in contrast to full disruption of all other TFIIH subunits, viability of Ttda(-/-) cells was not affected. Surprisingly, Ttda(-/-) cells were completely NER deficient, contrary to the incomplete NER deficiency of TTD-A patient-derived cells. We further showed that TTD-A patient mutations only partially inactivate TTDA function, explaining the relatively mild repair phenotype of TTD-A cells. Moreover, Ttda(-/-) cells were also highly sensitive to oxidizing agents. These findings reveal an essential role of TTDA for life, nucleotide excision repair, and oxidative DNA damage repair and identify Ttda(-/-) cells as a unique class of TFIIH mutants.


Asunto(s)
Reparación del ADN , Síndromes de Tricotiodistrofia , Animales , Síndrome de Cockayne , Humanos , Mutación , Factor de Transcripción TFIIH/genética , Factores de Transcripción/genética , Transcripción Genética , Síndromes de Tricotiodistrofia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...